5 resultados para Triticum aestivum

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wheat (Triticum aestivum) was chosen to analyze the effect of two polycyclic aromatic hydrocarbons (PAHs), Phenanthrene (PHE) and Pyrene (PY) in brown meadow soil at low concentrations. The effects of PHE and PY were determined by analyzing the changes in activity of Cytochrome P450 (CytP450) and antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Results indicated that both PHE and PY caused changes in activity of CytP450 and the antioxidant enzymes, SOD, POD and CAT. CytP450 activity was significantly stimulated with 1 mg kg-1 of both PHE and PY individually and significantly inhibited with 4 mg kg-1, which showed that pollution stress of PHE or PY can damage the metabolism and detoxification systems of plants. Moreover, as PHE and PY combined at 1 mg kg-1, CytP450 was increased significantly more than when PHE and PY were applied individually, which illustrates obvious synergistic effects. No significant variation were found in activity of SOD in response to individual exposure of PHE or PY in soil, but SOD activity decreased slightly in response to a combined PHE and PY exposure. Great decrease variation was found in CAT and POD activity in response to individual exposure of PHE or PY in soil. No enhanced toxic effects were shown by POD in response to a PHE and PY combined exposure, however CAT showed increased inhibition. From the aspects of metabolism and detoxification as well as antioxidant enzyme activity, our study has provided experimental basis for the pollution diagnosis of PAHs in soils at low concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electron microscopy techniques such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM) have been invaluable tools for the study of the micromorphology of plant cuticles. However, for electron microscopy, the preparation techniques required may invariably introduce artefacts in cuticle preservation. Further, there are a limited number of methods available for quantifying the image data obtained through electron microscopy. Therefore, in this study, optical microscopy techniques were coupled with staining procedures and, along with SEM were used to qualitatively and quantitatively assess the ultrastructure of plant leaf cuticles. Leaf cryosections of Triticum aestivum (wheat), Zea mays (maize), and Lupinus angustifolius (lupin) were stained with either fat-soluble azo stain Sudan IV or fluorescent, diarylmethane Auramine O and were observed under confocal laser scanning microscope (CLSM). For all the plant species tested, the cuticle on the leaf surfaces could be clearly resolved in many cases into cuticular proper (CP), external cuticular layer (ECL), and internal cuticular layer (ICL). Novel image data analysis procedures for quantifying the epicuticular wax micromorphology were developed, and epicuticular waxes of L. angustifolius were described here for the first time. Together, application of a multifaceted approach involving the use of a range of techniques to study the plant cuticle has led to a better understanding of cuticular structure and provides new insights into leaf surface architecture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Routine agricultural practices are heavily dependent on the use of surfactants, many of which are toxic to humans and detrimental to the environment. In proof of concept work we have previously shown the potential of nanostructured liquid crystalline particles (NLCP) to safely interact with plant leaf cuticular surfaces with minimal impact on epicuticular waxes. Here we demonstrate the use of NLCP to effectively deliver the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) to plant leaves in laboratory and field studies. In the laboratory, the physiological stress responses of lupin, Lupinus angustifolius (L.) (Fabaceae) towards NLCP spray applications were shown to be much reduced in comparison with application of two common surfactants. Phytotoxicity assays of 2,4-D loaded NLCP were used to validate the herbicidal effects on Arabidopsis thaliana (L.) Heynth. (Brassicaceae) and established a similarity with that of surfactant assisted 2,4-D delivery when tested at a concentration of 0.1%. Field trials were conducted to test the efficacy of NLCP-assisted delivery of 2,4-D in comparison with commercial surfactants for the control of the invasive weed wild radish, Raphanus raphanistrum (L.) (Brassicaceae), in wheat, Triticum aestivum (L.) (Poaceae) crop fields. Compared against Estercide 800, a commercially available 2,4-D formulation, NLCP assisted delivery of 2,4-D was effective at low concentrations of 0.03% and 0.06%. The crop yield remained similar for all the tested concentrations and formulations of 2,4-D loaded NLCP and Estercide 800. This is the first report to directly show that, as an alternative to conventional methods, NLCP can be used under both laboratory and field conditions to successfully delivery an agrochemical.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agrochemical spray formulations applied to plants are often mixed with surfactants that facilitate delivery of the active ingredient. However, surfactants cause phytotoxicity and off-target effects in the environment. We propose the use of nanostructured liquid crystalline particles (NLCP) as an alternative to surfactant-based agrochemical delivery. For this, we have compared the application of commercial surfactants, di (2-ethylhexyl) sulfosuccinate and alkyl dimethyl betaine, with NLCP made from phytantriol, at concentrations of 0.1%, 1% and 5% on the adaxial surface of leaves of four plant species Ttriticum aestivum (wheat), Zea mays (maize), Lupinus angustifolius (lupin), and Arabidopsis thaliana. In comparison with the application of surfactants there was less phytotoxicity on leaves of each species following treatment with NLCP. Following treatment of leaves with NLCP analysis of cuticular wax micromorphology revealed less wax solubilization in the monocot species. The results clearly show that there are advantages in the use of NLCP rather than surfactants for agrochemical delivery.